题目:
https://leetcode.com/problems/search-for-a-range/
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
最直接的想法就是先二叉查找到target的一个index,然后再往左往右分别查找边界,这样实际上有三遍二叉查找,代码如下:
public class Solution {
public int[] searchRange(int[] A, int target) {
int[] result = {-1, -1};
if (A == null || A.length == 0) {
return result;
}
int l = 0;
int r = A.length - 1;
boolean hasTarget = false;
int mid = (l + r) / 2;
while (l <= r) {
mid = (l + r) / 2;
if (A[mid] == target) {
hasTarget = true;
break;
} else if (A[mid] < target) {
l = mid + 1;
} else {
r = mid -1;
}
}
if (!hasTarget) {
return result;
}
// at this point, A[mid] = target, then need to find the range
// 1. find left range
l = 0;
r = mid;
result[1] = mid;
while (l <= r) {
mid = (l + r) / 2;
if (A[mid] == target) {
r = mid - 1;
} else {
// must be less than target
l = mid + 1;
}
}
result[0] = l;
// 2. find right range
l = result[1];
r = A.length - 1;
while (l <= r) {
mid = (l + r) / 2;
if (A[mid] == target) {
l = mid + 1;
} else {
// must be great than target
r = mid - 1;
}
}
result[1] = r;
return result;
}
}
提交之后发现运行时间排在JAVA类的靠后,有没有优化的空间呢? 发现其实并不需要先找到一个Index之后再找左右的边界,可以一遍二叉查找左边界,再来一次查找右边界,代码如下:
public class Solution {
public int[] searchRange(int[] A, int target) {
int[] result = {-1, -1};
if (A == null || A.length == 0) {
return result;
}
int l = 0;
int r = A.length - 1;
// 1. find left range
while (l <= r) {
int mid = (l + r) / 2;
if (A[mid] >= target) {
r = mid - 1;
} else {
l = mid + 1;
}
}
if (l >= A.length || A[l] != target) {
// not found
return result;
}
result[0] = l;
// 2. find right range
r = A.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (A[mid] == target) {
l = mid + 1;
} else {
// must be great than target
r = mid - 1;
}
}
result[1] = r;
return result;
}
}
作者:ywheel
本文出处:http://blog.ywheel.com/post/2015/03/10/leetcode_34/
文章版权归本人所有,欢迎转载,但必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。